MyJournals Home  

RSS FeedsRemote Sensing, Vol. 14, Pages 4897: Optimizing Management Practices to Reduce Sediment Connectivity between Forest Roads and Streams in a Mountainous Watershed (Remote Sensing)

 
 

30 september 2022 15:12:31

 
Remote Sensing, Vol. 14, Pages 4897: Optimizing Management Practices to Reduce Sediment Connectivity between Forest Roads and Streams in a Mountainous Watershed (Remote Sensing)
 


Forest roads often increase runoff and sediment loss, thus greatly impacting hydrological processes in mountainous watersheds. While there has been previous investigation on best management practices (BMPs) to reduce soil erosion from forest roads, few studies have attempted to optimize BMPs based on how much they can decrease sediment connectivity between forest roads and streams. To close this gap in knowledge, we analyzed the spatial relationship between forest roads and streams, presented the spatial distribution of sediment connectivity by integrating the forest roads into the calculation of the index of connectivity (IC), determined how sediment connectivity would respond to additional BMPs through simulating scenarios, and used these data to optimize the BMPs so they would intercept the greatest sediment loads. We found that forest roads and streams in the Xiangchagou watershed in the Dabie Mountain area of China tend to occur within 180 m of each other; however, within the same buffer zones, streams are more often accompanied by forest roads. IC was greatest near road–stream crossings but smaller near streams and forest roads, and it tended to decrease as the buffer distance increased. Furthermore, we found that sediment connectivity was decreased through running a variety of scenarios that used sediment basin and riparian buffers as BMPs between forest roads and streams. Specifically, within this watershed, riparian buffers should be 64 m wide, and there should be 30 sediment basins with a minimum upslope drainage area of 2 ha. At these quantities, the BMPs in this watershed would significantly affect sediment connectivity. By contrast, beyond these thresholds, increasing the width of riparian buffers or the number of sediment basins does not lead to meaningful sediment reductions. In this way, we were able to use the mean change point method to determine the optimal sediment basin quantity (30 with corresponding minimum upslope drainage area of 2 ha) and the optimal riparian buffer width (64 m) for the Xiangchagou watershed. While these results are a first approximation in a novel research area, they can guide forest managers and stakeholders to design and optimize BMPs that control the delivery of eroded sediments associated with forest roads.


 
96 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 14, Pages 4896: Probabilistic Tracking of Annual Cropland Changes over Large, Complex Agricultural Landscapes Using Google Earth Engine (Remote Sensing)
Remote Sensing, Vol. 14, Pages 4886: Comparison of S5P/TROPOMI Inferred NO2 Surface Concentrations with In Situ Measurements over Central Europe (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten