MyJournals Home  

RSS FeedsRemote Sensing, Vol. 14, Pages 4944: Sugarcane Biomass Prediction with Multi-Mode Remote Sensing Data Using Deep Archetypal Analysis and Integrated Learning (Remote Sensing)

 
 

3 october 2022 14:24:22

 
Remote Sensing, Vol. 14, Pages 4944: Sugarcane Biomass Prediction with Multi-Mode Remote Sensing Data Using Deep Archetypal Analysis and Integrated Learning (Remote Sensing)
 


The use of multi-mode remote sensing data for biomass prediction is of potential value to aid planting management and yield maximization. In this study, an advanced biomass estimation approach for sugarcane fields is proposed based on multi-source remote sensing data. Since feature interpretability in agricultural data mining is significant, a feature extraction method of deep archetypal analysis (DAA) that has good model interpretability is introduced and aided by principal component analysis (PCA) for feature mining from the multi-mode multispectral and light detection and ranging (LiDAR) remote sensing data pertaining to sugarcane. In addition, an integrated regression model integrating random forest regression, support vector regression, K-nearest neighbor regression and deep network regression is developed after feature extraction by DAA to precisely predict biomass of sugarcane. In this study, the biomass prediction performance achieved using the proposed integrated learning approach is found to be predominantly better than that achieved by using conventional linear methods in all the time periods of plant growth. Of more significance, according to model interpretability of DAA, only a small set of informative features maintaining their physical meanings (four informative spectral indices and four key LiDAR metrics) can be extracted which eliminates the redundancy of multi-mode data and plays a vital role in accurate biomass prediction. Therefore, the findings in this study provide hands-on experience to planters with indications of the key or informative spectral or LiDAR metrics relevant to the biomass to adjust the corresponding planting management design.


 
96 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 14, Pages 4940: Remote Sensing on Alfalfa as an Approach to Optimize Production Outcomes: A Review of Evidence and Directions for Future Assessments (Remote Sensing)
Remote Sensing, Vol. 14, Pages 4943: Automated Health Estimation of Capsicum annuum L. Crops by Means of Deep Learning and RGB Aerial Images (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten