MyJournals Home  

RSS FeedsIJMS, Vol. 23, Pages 14272: Molecular Mechanisms of Cartilage Repair and Their Possible Clinical Uses: A Review of Recent Developments (International Journal of Molecular Sciences)

 
 

17 november 2022 17:15:36

 
IJMS, Vol. 23, Pages 14272: Molecular Mechanisms of Cartilage Repair and Their Possible Clinical Uses: A Review of Recent Developments (International Journal of Molecular Sciences)
 


Articular cartilage (AC) defects are frequent but hard to manage. Osteoarthritis (OA) is a musculoskeletal illness that afflicts between 250 and 500 million people in the world. Even though traditional OA drugs can partly alleviate pain, these drugs cannot entirely cure OA. Since cartilaginous tissue of the joints has a poor self-repair capacity and very poor proliferative ability, the healing of injured cartilaginous tissue of the joint has not been accomplished so far. Consequently, the discovery of efficacious mediations and regenerative treatments for OA is needed. This manuscript reviews the basic concepts and the recent developments on the molecular mechanisms of cartilage repair and their potential clinical applications. For this purpose, a literature exploration was carried out in PubMed for the years 2020, 2021, and 2022. On 31 October 2022 and using “cartilage repair molecular mechanisms” as keywords, 41 articles were found in 2020, 42 in 2021, and 36 in 2022. Of the total of 119 articles, 80 were excluded as they were not directly related to the title of this manuscript. Of particular note are the advances concerning the mechanisms of action of hyaluronic acid, mesenchymal stem cells (MSCs), nanotechnology, enhancer of zeste 2 polycomb repressive complex 2 subunit (EHZ2), hesperetin, high mobility group box 2 (HMGB2), α2-macroglobulin (α2M), proteoglycan 4 (Prg4)/lubricin, and peptides related to cartilage repair and treatment of OA. Despite the progress made, current science has not yet achieved a definitive solution for healing AC lesions or repairing cartilage in the case of OA. Therefore, further research into the molecular mechanisms of AC damage is needed in the coming decades.


 
98 viewsCategory: Biochemistry, Biophysics, Molecular Biology
 
IJMS, Vol. 23, Pages 14273: Identification of Species-Specific MicroRNAs Provides Insights into Dynamic Evolution of MicroRNAs in Plants (International Journal of Molecular Sciences)
IJMS, Vol. 23, Pages 14275: The Influence of Circadian Rhythm on the Activity of Oxidative Stress Enzymes (International Journal of Molecular Sciences)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten