MyJournals Home  

RSS FeedsRemote Sensing, Vol. 14, Pages 5933: A 3D Space-Time Non-Local Mean Filter (NLMF) for Land Changes Retrieval with Synthetic Aperture Radar Images (Remote Sensing)

 
 

23 november 2022 14:51:41

 
Remote Sensing, Vol. 14, Pages 5933: A 3D Space-Time Non-Local Mean Filter (NLMF) for Land Changes Retrieval with Synthetic Aperture Radar Images (Remote Sensing)
 


Sequences of multi-temporal synthetic aperture radar (SAR) images are routinely used for land-use land-change (LULC) applications, allowing the retrieval of accurate and up-to-date information on the state of the Earth’s surface and its temporal variations. Change detection (CD) methods that rely on the exploitation of SAR data are, generally, made of three distinctive steps: (1) pre-processing of the SAR images; (2) comparison of the pairs of SAR images; and (3) the automatic extraction of the “changed areas”, employing proper thresholding algorithms. Within this general framework, the reduction in speckle noise effects, which can be obtained by applying spatial multi-looking operations and ad hoc noise filters, is fundamental for the better detecting and classifying of changed regions. Usually, speckle noise filters are singularly and independently applied to every SAR image without the consideration of their inherent temporal relationships. In particular, most use local (spatial) approaches based on determining and averaging SAR backscattered signals related to neighboring SAR pixels. In this work, conversely, we explore the potential of a joint 3D space-time non-local mean filter (NLMF), which relies on the discrimination of similar features in a block of non-local SAR pixels extracted from the same or different SAR images. The theory behind non-local-mean filters is, first, shortly revised. Then, the developed space-time NLMF is applied to a real test case for the purposes of identifying flooded zones due to the massive inundations that hit the Kerala region, India, during the summer of 2018. To this aim, a set of 18 descending SAR images collected from the European (EU) Copernicus Sentinel-1 (S-1) sensor was exploited. The performance of the developed NLMF has also been assessed. It is worth remarking that the proposed method can be applied for the purposes of analyzing a heterogenous set of natural and/or artificial disastrous conditions. Further, it can also be helpful during the pre-processing stages of the sequences of SAR images for the purposes of CD applications.


 
101 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 14, Pages 5932: A Novel ML-Aided Methodology for SINS/GPS Integrated Navigation Systems during GPS Outages (Remote Sensing)
Remote Sensing, Vol. 14, Pages 5934: Evaluation of LiDAR-Derived Features Relevance and Training Data Minimization for 3D Point Cloud Classification (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten