MyJournals Home  

RSS FeedsEnergies, Vol. 15, Pages 8835: Suitability of Different Machine Learning Outlier Detection Algorithms to Improve Shale Gas Production Data for Effective Decline Curve Analysis (Energies)

 
 

23 november 2022 16:22:53

 
Energies, Vol. 15, Pages 8835: Suitability of Different Machine Learning Outlier Detection Algorithms to Improve Shale Gas Production Data for Effective Decline Curve Analysis (Energies)
 


Shale gas reservoirs have huge amounts of reserves. Economically evaluating these reserves is challenging due to complex driving mechanisms, complex drilling and completion configurations, and the complexity of controlling the producing conditions. Decline Curve Analysis (DCA) is historically considered the easiest method for production prediction of unconventional reservoirs as it only requires production history. Besides uncertainties in selecting a suitable DCA model to match the production behavior of the shale gas wells, the production data are usually noisy because of the changing choke size used to control the bottom hole flowing pressure and the multiple shut-ins to remove the associated water. Removing this noise from the data is important for effective DCA prediction. In this study, 12 machine learning outlier detection algorithms were investigated to determine the one most suitable for improving the quality of production data. Five of them were found not suitable, as they remove complete portions of the production data rather than scattered data points. The other seven algorithms were deeply investigated, assuming that 20% of the production data are outliers. During the work, eight DCA models were studied and applied. Different recommendations were stated regarding their sensitivity to noise. The results showed that the clustered based outlier factor, k-nearest neighbor, and the angular based outlier factor algorithms are the most effective algorithms for improving the data quality for DCA, while the stochastic outlier selection and subspace outlier detection algorithms were found to be the least effective. Additionally, DCA models, such as the Arps, Duong, and Wang models, were found to be less sensitive to removing noise, even with different algorithms. Meanwhile, power law exponential, logistic growth model, and stretched exponent production decline models showed more sensitivity to removing the noise, with varying performance under different outlier-removal algorithms. This work introduces the best combination of DCA models and outlier-detection algorithms, which could be used to reduce the uncertainties related to production forecasting and reserve estimation of shale gas reservoirs.


 
78 viewsCategory: Biophysics, Biotechnology, Physics
 
Energies, Vol. 15, Pages 8856: Purification of Residual Glycerol from Biodiesel Production as a Value-Added Raw Material for Glycerolysis of Free Fatty Acids in Waste Cooking Oil (Energies)
Energies, Vol. 15, Pages 8860: Reconfigured Photovoltaic Model to Facilitate Maximum Power Point Tracking for Micro and Nano-Grid Systems (Energies)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2022 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten