MyJournals Home  

RSS FeedsRemote Sensing, Vol. 14, Pages 6014: Cultivated Land Quality Evaluated Using the RNN Algorithm Based on Multisource Data (Remote Sensing)

 
 

27 november 2022 11:42:26

 
Remote Sensing, Vol. 14, Pages 6014: Cultivated Land Quality Evaluated Using the RNN Algorithm Based on Multisource Data (Remote Sensing)
 


Cultivated land quality (CLQ) is associated with national food security, benign economic development, social harmony, and stability. The scientific evaluation of CLQ provides the basis for achieving the “trinity” protection of cultivated land quantity, and quality, as well as ecology. However, the current research on CLQ evaluation has some limitations, mainly the poor consideration of evaluation indicators, time-consuming and labor-intensive data acquisition, and low precision of evaluation at the regional scale. Therefore, this study introduced multisource data to evaluate CLQ and proposed a new method for CLQ evaluation (natural grade evaluation, utilization grade evaluation, and economic grade evaluation), combining multisource data and the recurrent neural network (RNN) algorithm. Initially, optimal indicators were determined by correlation analysis and generalized linear regression coefficient methods based on factors related to CLQ acquired from multisource data. Then, CLQ evaluation models were constructed with the RNN algorithm on the basis of the aforementioned optimal indicators. Finally, the models were adopted to map CLQ. The present study was carried out in Guangzhou City, Guangdong Province, China. According to the results: (1) CLQ showed close relationship to pH, effective soil layer thickness (EST), chemical fertilizer application rate (CHFE), organic matter content (OMC), annual accumulated temperature (TEMA), 5–15 cm soil depth soil cation exchange capacity (CEC515), 0–5 cm soil depth soil cation exchange capacity (CEC05), 5–15 cm soil depth soil organic carbon content (SOC515), 0–5 cm soil depth soil organic carbon content (SOC05), field slope (FS), groundwater level (GWL), and terrain slope (TS). (2) All modeling accuracies (R2) were greater than 0.80 for the CLQ evaluation models constructed based on the RNN algorithm. The area and spatial distribution of each grade of CLQ evaluation were consistent with the actual situation. The best and the worst quality cultivated land occupied a small area, and the area without a gap with the actual CLQ was as high as 76%, indicating that the model results were reliable. The study shows the suitability of the method for evaluating CLQ at the regional scale, offering a scientific foundation for the rational utilization and management of cultivated land resources, as well as a reference for evaluating CLQ in the future.


 
104 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 14, Pages 6011: Assessment of Grassland Degradation on the Tibetan Plateau Based on Multi-Source Data (Remote Sensing)
Remote Sensing, Vol. 14, Pages 6015: Research on Road Extraction Method based on Sustainable Development Goals Satellite-1 Nighttime Light Data (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten