MyJournals Home  

RSS FeedsRemote Sensing, Vol. 14, Pages 6045: Investigating the Performance of Carbon Monoxide and Methane Observations from Sentinel-5 Precursor in China (Remote Sensing)

 
 

29 november 2022 11:42:13

 
Remote Sensing, Vol. 14, Pages 6045: Investigating the Performance of Carbon Monoxide and Methane Observations from Sentinel-5 Precursor in China (Remote Sensing)
 


Since its launch on 13 October 2017, the TROPOspheric Monitoring Instrument (TROPOMI) on board the Sentinel-5 Precursor (S5P) mission has been measuring the solar radiation backscattered by Earth’s atmosphere and surface. In this study, we evaluate the TROPOMI operational methane (CH4) and carbon monoxide (CO) products’ performance results covering about 3 years using the only two global Total Carbon Column Observing Network (TCCON) sites in China, i.e., the Hefei site and the Xianghe site. These two sites have recently joined the TCCON, and this study uses the both sites simultaneously to validate the TROPOMI products over China for the first time. We found that the systematic bias with rescaling between the TROPOMI CO products and the Hefei site is on average 1.78 ± 6.35 ppb or 1.18 ± 5.35%. The systematic bias with rescaling between the TROPOMI CO products and the Xianghe site is on average 5.33 ± 14.24 ppb or 3.85 ± 10.30%. Both the stations show a correlation above 0.9. The TROPOMI CO data are systematically higher than the two TCCON sites measurements in China. We found that the systematic bias with rescaling between the TROPOMI CH4 products and the Hefei site is on average −4.13 ± 11.65 ppb or −0.22 ± 0.62%. The systematic bias between the TROPOMI CH4 products and Xianghe site is on average −7.25 ± 10.72 ppb or −0.39 ± 0.57%. Both the stations show a correlation above 0.9. The TROPOMI CH4 data are systematically lower than the two TCCON sites measurements in China. We found that the bias between the TROPOMI and the two sites’ data as a function of the coincident radius around the two sites is mostly affected by localized emissions for both CO and CH4. We also observe a CO decreasing trend and a CH4 increasing trend in the year-to-year relative changes from 2019 to 2021. Validating against reference from Hefei and Xianghe TCCON site demonstrates the high quality of TROPOMI CO and CH4 data over China.


 
104 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 14, Pages 6042: Validation of Atmospheric Absorption Models within the 20–60 GHz Band by Simultaneous Radiosonde and Microwave Observations: The Advantage of Using ECS Formalism (Remote Sensing)
Remote Sensing, Vol. 14, Pages 6044: An Enhanced Image Patch Tensor Decompostion for Infrared Small Target Detection (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten