MyJournals Home  

RSS FeedsRemote Sensing, Vol. 14, Pages 6084: Exploring the Spatio-Temporal Characteristics of Urban Thermal Environment during Hot Summer Days: A Case Study of Wuhan, China (Remote Sensing)

 
 

30 november 2022 18:18:43

 
Remote Sensing, Vol. 14, Pages 6084: Exploring the Spatio-Temporal Characteristics of Urban Thermal Environment during Hot Summer Days: A Case Study of Wuhan, China (Remote Sensing)
 


An urban thermal environment is an area receiving special attention. In order to effectively explore its spatio-temporal characteristics during hot summer days, this study introduced the standard deviational ellipse (SDE) to construct an urban heat island index to describe the general spatial character of an urban thermal environment, and then used local Moran’s I to identify its local spatial cluster characteristics. Finally, the regressions of ordinary least squares (OLS) and spatial lag model (SLM) were adopted to explore the effect of woodland, water body and impervious surface on the thermal environment. Taking the city of Wuhan as a study area and using the air temperature on seven consecutive days, from 17 July to 23 July in 2018, from the China Meteorological Administration Land Data Assimilation System (CLDAS-V2.0), the results show that the urban heat island index can effectively represent the general characteristics of the thermal environment. The general trends of heat island intensity decrease first and then increase from 00:00 to 24:00. The heat island intensity is at its minimum from 10:00 to 16:00, and at its maximum from 22:00 to 4:00 the next day. Local Moran’s I values indicate that the clusters of high air temperature at 06:00 and at 22:00 are associated with the impervious surface and the water body. This is further illustrated by the regression analysis of OLS, which can explain 50–60% of the spatial variation of the air temperature. Then, the fitness of the SLM is greatly improved; the coefficients of determination at 06:00 and at 22:00 are all not less than 0.97. However, the explanation of the local land uses accounting for the spatial variation of the air temperature becomes lower. The regression analysis also shows that the woodland always has the effect of decreasing air temperature at 06:00, 14:00 and 22:00, implying that increasing the vegetation may be the most effective way to mitigate the adverse circumstance of the urban thermal environment.


 
103 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 14, Pages 6086: Study on Retrievals of Ocean Wave Spectrum by Spaceborne SAR in Ice-Covered Areas (Remote Sensing)
Remote Sensing, Vol. 14, Pages 6087: Layover Detection Using Neural Network Based on Expert Knowledge (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten