MyJournals Home  

RSS FeedsEnergies, Vol. 15, Pages 9220: Dynamic DNR and Solar PV Smart Inverter Control Scheme Using Heterogeneous Multi-Agent Deep Reinforcement Learning (Energies)

 
 

5 december 2022 15:12:40

 
Energies, Vol. 15, Pages 9220: Dynamic DNR and Solar PV Smart Inverter Control Scheme Using Heterogeneous Multi-Agent Deep Reinforcement Learning (Energies)
 


The conventional volt-VAR control (VVC) in distribution systems has limitations in solving the overvoltage problem caused by massive solar photovoltaic (PV) deployment. As an alternative method, VVC using solar PV smart inverters (PVSIs) has come into the limelight, which can respond quickly and effectively to solve the overvoltage problem by absorbing reactive power. However, the network power loss, that is, the sum of line losses in the distribution network, increases with reactive power. Dynamic distribution network reconfiguration (DNR), which hourly controls the network topology by controlling sectionalizing and tie switches, can also solve the overvoltage problem and reduce network loss by changing the power flow in the network. In this study, to improve the voltage profile and minimize the network power loss, we propose a control scheme that integrates the dynamic DNR with volt-VAR control of PVSIs. The proposed control scheme is practically usable for three reasons: Primarily, the proposed scheme is based on a deep reinforcement learning (DRL) algorithm, which does not require accurate distribution system parameters. Furthermore, we propose the use of a heterogeneous multiagent DRL algorithm to control the switches centrally and PVSIs locally. Finally, a practical communication network in the distribution system is assumed. PVSIs only send their status to the central control center, and there is no communication between the PVSIs. A modified 33-bus distribution test feeder reflecting the system conditions of South Korea is used for the case study. The results of this case study demonstrates that the proposed control scheme effectively improves the voltage profile of the distribution system. In addition, the proposed scheme reduces the total power loss in the distribution system, which is the sum of the network power loss and curtailed energy, owing to the voltage violation of the solar PV output.


 
117 viewsCategory: Biophysics, Biotechnology, Physics
 
Energies, Vol. 15, Pages 9219: Advanced Study of Spray Cooling: From Theories to Applications (Energies)
Energies, Vol. 15, Pages 9221: The Effect of CO2 Gas Emissions on the Market Value, Price and Shares Returns (Energies)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten