MyJournals Home  

RSS FeedsMolecules, Vol. 27, Pages 8621: Study on Oil Recovery Mechanism of Polymer-Surfactant Flooding Using X-ray Microtomography and Integral Geometry (Molecules)

 
 

6 december 2022 13:41:35

 
Molecules, Vol. 27, Pages 8621: Study on Oil Recovery Mechanism of Polymer-Surfactant Flooding Using X-ray Microtomography and Integral Geometry (Molecules)
 


Understanding pore-scale morphology and distribution of remaining oil in pore space are of great importance to carry out in-depth tapping of oil potential. Taking two water-wet cores from a typical clastic reservoir in China as an example, X-ray CT imaging is conducted at different experimental stages of water flooding and polymer-surfactant (P-S) flooding by using a high-resolution X-ray microtomography. Based on X-ray micro-CT image processing, 3D visualization of rock microstructure and fluid distribution at the pore scale is achieved. The integral geometry newly developed is further introduced to characterize pore-scale morphology and distribution of remaining oil in pore space. The underlying mechanism of oil recovery by P-S flooding is further explored. The results show that the average diameter of oil droplets gradually decreases, and the topological connectivity becomes worse after water flooding and P-S flooding. Due to the synergistic effect of “1 + 1 > 2” between the strong sweep efficiency of surfactant and the enlarged swept volume of the polymer, oil droplets with a diameter larger than 124.58 μm can be gradually stripped out by the polymer-surfactant system, causing a more scattered distribution of oil droplets in pore spaces of the cores. The network-like oil clusters are still dominant when water flooding is continued to 98% of water cut, but the dominant pore-scale oil morphology has evolved from network-like to porous-type and isolated-type after P-S flooding, which can provide strong support for further oil recovery in the later stage of chemical flooding.


 
90 viewsCategory: Biochemistry, Chemistry, Molecular Biology
 
Molecules, Vol. 27, Pages 8624: Osthole Suppresses Knee Osteoarthritis Development by Enhancing Autophagy Activated via the AMPK/ULK1 Pathway (Molecules)
Molecules, Vol. 27, Pages 8622: Green Downscaling of Solvent Extractive Determination Employing Coconut Oil as Natural Solvent with Smartphone Colorimetric Detection: Demonstrating the Concept via Cu(II) Assay Using 1,5-Diphenylcarbazide (Molecules)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten