MyJournals Home  

RSS FeedsIJERPH, Vol. 19, Pages 16449: Evaluation of Biodegradation of BTEX in the Subsurface of a Petrochemical Site near the Yangtze River, China (International Journal of Environmental Research and Public Health)

 
 

8 december 2022 08:08:52

 
IJERPH, Vol. 19, Pages 16449: Evaluation of Biodegradation of BTEX in the Subsurface of a Petrochemical Site near the Yangtze River, China (International Journal of Environmental Research and Public Health)
 


The contamination of soil and groundwater with BTEX (benzene, toluene, ethyl benzene, and xylenes) is a common issue at petrochemical sites, posing a threat to the ecosystems and human health. The goal of this study was to evaluate the biodegradation of BTEX in the subsurface of a petrochemical site near the Yangtze River, thus providing scientific basis for bioremediation of the contaminated site. Both molecular analysis of field samples and microcosm study in the laboratory were performed for the evaluation. Soil and groundwater samples were collected from the site. Microcosms were constructed with inoculum from the soil and incubated anaerobically in the presence of nitrate, ferric oxide, manganese oxide, sulfate, and sodium bicarbonate, respectively. The initial concentration of each component of BTEX (benzene, toluene, ethyl benzene, o-xylene) was 4–5 mg/L. Actinobacteria was dominant in the highly contaminated soil, while Proteobacteria was dominant in the slightly contaminated soil and the groundwater. The relative abundances of Firmicutes, Spirochaetes, and Caldiserica were higher in the highly contaminated soil and groundwater samples compared to those in the corresponding slightly contaminated samples. The relative abundances of predicted functions, such as carbohydrate transport and metabolism, nucleotide transport and metabolism, coenzyme transport and metabolism, amino acid transport and metabolism, etc., in the highly contaminated soil and groundwater samples were higher than those in the corresponding slightly contaminated samples. In microcosms, biodegradations of BTEX occurred, and the first-order rate constants in the presence of various electron acceptors had the following order: sulfate (0.08–0.10/d) > sodium bicarbonate (0.07–0.09/d) > ferric oxide (0.04–0.06/d) > nitrate (0.03–0.05/d) > manganese oxide (0.01–0.04/d).


 
81 viewsCategory: Medicine, Pathology, Toxicology
 
IJERPH, Vol. 19, Pages 16450: Effect of Fermented Sarco Oyster (Crassostrea gigas) Extract on Muscle Strength Enhancement in Postmenopausal Females: A Randomized, Double-Blind, Placebo-Controlled Trial (International Journal of Environmental Research and Public Health)
IJERPH, Vol. 19, Pages 16451: Life Cycle Assessment-Based Carbon Footprint Accounting Model and Analysis for Integrated Energy Stations in China (International Journal of Environmental Research and Public Health)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Toxicology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten