MyJournals Home  

RSS FeedsEnergies, Vol. 16, Pages 1298: Performance Characteristic Analysis of Metallic and Non-Metallic Oxide Nanofluids for a Compound Parabolic Collector: Improvement of Renewable Energy Technologies in Buildings (Energies)

 
 

26 january 2023 10:33:47

 
Energies, Vol. 16, Pages 1298: Performance Characteristic Analysis of Metallic and Non-Metallic Oxide Nanofluids for a Compound Parabolic Collector: Improvement of Renewable Energy Technologies in Buildings (Energies)
 


The building sector is targeting net-zero emissions through the integration of renewable energy technologies, especially for space cooling and heating applications. In this regard, the use of solar thermal concentrating collectors is of vital importance. The performance of these collectors increases by using an efficient fluid such as a nanofluid due to their high thermal conductivity. This research addresses the preparation, stability analysis, and characterisation of metallic and non-metallic oxide nanofluids and their experimental analysis in a compound parabolic collector (CPC) system. Five different combinations of nanofluids are used with different volumetric concentrations (0.025%, 0.05%, and 0.075%) including multi-wall carbon nanotube with water (MWCNT–H2O), multi-wall carbon nanotube with ethylene glycol (MWCNT–EG), aluminium oxide with water (Al2O3–H2O), aluminium oxide with ethylene glycol (Al2O3–EG), and magnesium oxide with ethylene glycol (MgO–EG). The prepared nanofluids are characterised in terms of thermal conductivity and viscosity. Detailed experimentation is performed to investigate the CPC system integrated with the nanofluids. The results obtained from the detailed characterisation of the MWCNT–H2O nanofluid showed that the nanofluids have a 37.17% better thermal conductivity than distilled water as a primary fluid, and the MWCNT–EG nanofluid has demonstrated an increase in viscosity by 8.5% compared to ethylene glycol (EG). The experimental analysis revealed that the thermal efficiency of the collector integrated with the MWCNT–H2O nanofluid is increased by 33% compared to water. Meanwhile, the thermal efficiency of the collector with MWCNT–EG was increased by 24.9% compared to EG. Moreover, a comparative analysis among metallic nanofluids was also performed, i.e., Al2O3–H2O, Al2O3–EG, and MgO–EG. In each case, the thermal efficiency of the collector was recorded, which was greater than the base fluid by percentages of 29.4%, 22.29%, and 23.1%, respectively. The efficiency of non-metallic nanofluids is better than metallic nanofluids by 7.7%. From the obtained results, it can be concluded that the CPC system performed best with MWCNT–H2O compared to any other combination of nanofluids.


 
106 viewsCategory: Biophysics, Biotechnology, Physics
 
Energies, Vol. 16, Pages 1297: Influence of Conduction Drying on the Physical and Combustion Properties of Hazelnut Shell (Energies)
Energies, Vol. 16, Pages 1296: Noise Spectroscopy: A Tool to Understand the Physics of Solar Cells (Energies)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten