MyJournals Home  

RSS FeedsEnergies, Vol. 16, Pages 1309: Multi-Feature Data Fusion-Based Load Forecasting of Electric Vehicle Charging Stations Using a Deep Learning Model (Energies)

 
 

26 january 2023 15:35:52

 
Energies, Vol. 16, Pages 1309: Multi-Feature Data Fusion-Based Load Forecasting of Electric Vehicle Charging Stations Using a Deep Learning Model (Energies)
 


We propose a forecasting technique based on multi-feature data fusion to enhance the accuracy of an electric vehicle (EV) charging station load forecasting deep-learning model. The proposed method uses multi-feature inputs based on observations of historical weather (wind speed, temperature, and humidity) data as multiple inputs to a Long Short-Term Memory (LSTM) model to achieve a robust prediction of charging loads. Weather conditions are significant influencers of the behavior of EV drivers and their driving patterns. These behavioral and driving patterns affect the charging patterns of the drivers. Rather than one prediction (step, model, or variables) made by conventional LSTM models, three charging load (energy demand) predictions of EVs were made depending on different multi-feature inputs. Data fusion was used to combine and optimize the different charging load prediction results. The performance of the final implemented model was evaluated by the mean absolute prediction error of the forecast. The implemented model had a prediction error of 3.29%. This prediction error was lower than initial prediction results by the LSTM model. The numerical results indicate an improvement in the performance of the EV load forecast, indicating that the proposed model could be used to optimize and improve EV load forecasts for electric vehicle charging stations to meet the energy requirements of EVs.


 
99 viewsCategory: Biophysics, Biotechnology, Physics
 
Energies, Vol. 16, Pages 1310: A Numerical Study on the Characteristics of the Pressurized Water Reactor’s (PWR) Primary Moisture Separator Using the Particle Tracking Method (Energies)
Energies, Vol. 16, Pages 1311: Application of the Generalized Normal Distribution Optimization Algorithm to the Optimal Selection of Conductors in Three-Phase Asymmetric Distribution Networks (Energies)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten