MyJournals Home  

RSS FeedsMolecules, Vol. 28, Pages 1286: Delphinidin-3-rutinoside from Blackcurrant Berries (Ribes nigrum): In Vitro Antiproliferative Activity and Interactions with Other Phenolic Compounds (Molecules)

 
 

28 january 2023 14:41:33

 
Molecules, Vol. 28, Pages 1286: Delphinidin-3-rutinoside from Blackcurrant Berries (Ribes nigrum): In Vitro Antiproliferative Activity and Interactions with Other Phenolic Compounds (Molecules)
 


Blackcurrant berries (Rigrum L.) are of great interest for food scientists/technologists as a source of delphinidin-3-rutinoside (D3R). This is an uncommon phenolic compound in diets that unveils potent antiproliferative activity besides its colour. Other phenolic compounds, such as chlorogenic acid (CA) and epicatechin (EC), also known by their antiproliferative effects, are abundant in foods and beverages. To design smart food/supplements combinations containing blackcurrant and improved anticancer properties at the gastrointestinal level, there is the need for more data concerning the combined effects of those molecules. In this work, synergistic, additive, or antagonistic effects against gastric and intestinal cancers of D3R, CA, and EC were assessed in vitro. The antiproliferative activity of D3R, CA, and EC, alone and in binary combinations (D3R+CA, D3R+EC, and CA+EC) on NCI-N87 (gastric) and Caco-2 (intestinal) cells, was assessed following the Chou-Talalay theorem at equipotent contributions (i.e., (IC50)1/(IC50)2). D3R presented the strongest antiproliferative activity of the single molecules tested, with IC50 values of 24.9 µM and 102.5 µM on NCI-N87 and Caco-2 cells, respectively. The combinations D3R+CA and CA+EC were synergic against NCI-N87 until IC50 and IC75, respectively, while D3R+EC shifted from slight antagonism to synergism at higher doses. On Caco-2 cells, antagonism at low doses and synergism at high doses was observed. Therefore, the synergisms observed on the gastric cancer model at low doses occurred on the colon model only at high doses. Data herein described is vital to the targeted smart design of foods and supplements, as it is foreseen that the same combination of phenolic compounds causes different interactions/effects depending on the dose and gastrointestinal compartment.


 
98 viewsCategory: Biochemistry, Chemistry, Molecular Biology
 
Molecules, Vol. 28, Pages 1285: The Construction of Polycyclic Pyridones via Ring-Opening Transformations of 3-hydroxy-3,4-dihydropyrido[2,1-c][1,4]oxazine-1,8-diones (Molecules)
Molecules, Vol. 28, Pages 1287: Acid-Triggered Switchable Near-Infrared/Shortwave Infrared Absorption and Emission of Indolizine-BODIPY Dyes (Molecules)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten