MyJournals Home  

RSS FeedsIJMS, Vol. 24, Pages 2563: Antiproliferative Activity of Antibiotics through DNA Binding Mechanism: Evaluation and Molecular Docking Studies (International Journal of Molecular Sciences)

 
 

29 january 2023 09:29:48

 
IJMS, Vol. 24, Pages 2563: Antiproliferative Activity of Antibiotics through DNA Binding Mechanism: Evaluation and Molecular Docking Studies (International Journal of Molecular Sciences)
 


The antiproliferative activity of three antibiotics clinically use, was studied through DNA inhibition mechanisms, ex vivo, in silico and in vitro. The ex vivo interaction of DNA with ciprofloxacin hydrochloride (CIP·HCl), penicillin G sodium salt (PEN·Na), and tetracycline hydrochloride (TC·HCl) was determined by UV-Vis spectra and viscosity measurements. Furthermore, their binding constants (Kb) toward CT-DNA were calculated (Kb = (2.8 ± 0.6) × 104 (CIP·HCl), (0.4 ± 0.1) × 104 (PEN·Na) and (6.9 ± 0.3) × 104 (TC·HCl) Μ−1). Docking studies on the binding interactions of antibiotics with DNA were performed to rationalize the ex vivo results. The in vitro antiproliferative activity of the antibiotics was evaluated against human breast adenocarcinoma (MCF-7) cells (IC50 values: 417.4 ± 28.2 (CIP·HCl), >2000 (PEN·Na) and 443.1 ± 17.2 (TC·HCl) μΜ). Cell cycle arrest studies confirmed the apoptotic type of MCF-7 cells. The toxicity of the studied agents was in vitro tested against human fetal lung fibroblast cells (MRC-5). The results are compared with the corresponding one for doxorubicin (DOX). Despite their low binding affinity to DNA (Kb) or their different mode of interaction, TC·HCl (anthracycline) or CIP·HCl (quinolones), exhibit notable antiproliferative activity and low toxicity.


 
105 viewsCategory: Biochemistry, Biophysics, Molecular Biology
 
IJMS, Vol. 24, Pages 2559: New Mutations in DNHD1 Cause Multiple Morphological Abnormalities of the Sperm Flagella (International Journal of Molecular Sciences)
IJMS, Vol. 24, Pages 2562: Melatonin Mitigates iNOS-Related Effects of HEMA and Camphorquinone in Human Dental Pulp Cells: Relevance for Postoperative Sensitivity Mechanism in Type 2 Diabetes (International Journal of Molecular Sciences)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten