MyJournals Home  

RSS FeedsMolecules, Vol. 28, Pages 1311: Synthesis of Glycerol Carbonate from Ethylene Carbonate Using Zinc Stearate as a Catalyst: Operating Conditions and Kinetic Modeling (Molecules)

 
 

30 january 2023 10:31:43

 
Molecules, Vol. 28, Pages 1311: Synthesis of Glycerol Carbonate from Ethylene Carbonate Using Zinc Stearate as a Catalyst: Operating Conditions and Kinetic Modeling (Molecules)
 


With the advent of biodiesel as a substitute/additive for diesel, the production of glycerol has experienced an increase, as it is an unavoidable byproduct of the biodiesel process; therefore, novel products and processes based on this triol are being very actively researched. Glycerol carbonate emerges as an advanced humectant from glycerol and a monomer for diverse polycarbonates. Its production in high yields and amounts can be achieved through the solventless transcarbonation of glycerol with other organic carbonates driven by alkaline catalysts, standing out amongst the cyclic carbonates due to its reactivity. Here, we have studied the main operational variables that affect the transcarbonation reaction of glycerol and ethylene carbonate catalyzed by zinc stearate: catalyst concentration, reagent molar ratio, and temperature. Subsequently, an appropriate kinetic model was fitted to all data obtained at 80 °C and several catalyst concentrations as well as reagent molar ratios. Finally, the selected kinetic model was extended and validated by fitting it to data obtained at several temperatures, finding that the activation energy of this reaction with this catalyst is around 69.2 kJ·mol−1. The kinetic model suggests that the reaction is bimolecular and elemental and that the process is interfacial in essence, with the catalyst dispersed in a narrow space between polar (glycerol) and nonpolar (ethylene carbonate) phases.


 
96 viewsCategory: Biochemistry, Chemistry, Molecular Biology
 
Molecules, Vol. 28, Pages 1312: New Insight into the Concanavalin A-Induced Apoptosis in Hepatocyte of an Animal Model: Possible Involvement of Caspase-Independent Pathway (Molecules)
Molecules, Vol. 28, Pages 1315: Evaluation of the Antioxidant Properties of Carvacrol as a Prospective Replacement for Crude Essential Oils and Synthetic Antioxidants in Food Storage (Molecules)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten