MyJournals Home  

RSS FeedsIJMS, Vol. 24, Pages 2777: Therapeutic Potential of Dimethyl Fumarate in Counteract Oral Squamous Cell Carcinoma Progression by Modulating Apoptosis, Oxidative Stress and Epithelial–Mesenchymal Transition (International Journal of Molecular Sciences)

 
 

1 february 2023 12:09:02

 
IJMS, Vol. 24, Pages 2777: Therapeutic Potential of Dimethyl Fumarate in Counteract Oral Squamous Cell Carcinoma Progression by Modulating Apoptosis, Oxidative Stress and Epithelial–Mesenchymal Transition (International Journal of Molecular Sciences)
 


Oral squamous cell carcinoma (OSCC) is a common human tumor, that originates from buccal mucosa and the tongue, associated with a high mortality rate. Currently, the treatment for OSCC involves surgery, chemotherapy and radiotherapy; however, survival outcomes for OSCC patients remain poor. For this reason, it is necessary to investigate new therapeutic strategies to counteract the progression of OSCC. In this study, we aimed to evaluate the role of dimethyl fumarate (DMF) in modulation of OSCC progression, both in vitro and in an in vivo orthotopic xenograft model. In vitro results revealed that DMF was able to reduce the expression of anti-apoptotic factors as BCL-2 and increased the expression of pro-apoptotic factors as Bax, Caspase-3 and BID. DMF appears to be involved in the modulation of oxidative stress mediators, such as MnSOD and HO-1. Furthermore, DMF showed to reduce the migratory ability of tumor cells and to modulate the expression of markers of epithelial-mesenchymal transition (EMT), as N-cadherin and E-cadherin. The in vivo study confirmed the data obtained in vitro significantly decreasing tumor mass and also reducing oxidative stress and apoptosis. Therefore, based on these results, the use of DMF could be considered a promising strategy to counteract oral cancer progression.


 
80 viewsCategory: Biochemistry, Biophysics, Molecular Biology
 
IJMS, Vol. 24, Pages 2786: SOCS7-Derived BC-Box Motif Peptide Mediated Cholinergic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells (International Journal of Molecular Sciences)
IJMS, Vol. 24, Pages 2788: Hypoxia Inhibits Cell Cycle Progression and Cell Proliferation in Brain Microvascular Endothelial Cells via the miR-212-3p/MCM2 Axis (International Journal of Molecular Sciences)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten