MyJournals Home  

RSS FeedsMolecules, Vol. 28, Pages 2810: Performance Enhancement of Proton Exchange Membrane Fuel Cell through Carbon Nanofibers Grown In Situ on Carbon Paper (Molecules)

 
 

20 march 2023 16:41:27

 
Molecules, Vol. 28, Pages 2810: Performance Enhancement of Proton Exchange Membrane Fuel Cell through Carbon Nanofibers Grown In Situ on Carbon Paper (Molecules)
 


We developed an integrated gas diffusion layer (GDL) for proton exchange membrane (PEM) fuel cells by growing carbon nanofibers (CNFs) in situ on carbon paper via the electro-polymerization of polyaniline (PANI) on carbon paper followed by a subsequent carbonization treatment process. The CNF/carbon paper showed a microporous structure and a significantly increased pore volume compared to commercial carbon paper. By utilizing this CNF/carbon paper in a PEM fuel cell, it was found that the cell with CNF/carbon paper had superior performance compared to the commercial GDL at both high and low humidity conditions, and its power density was as high as 1.21 W cm−2 at 100% relative humidity, which is 26% higher than that of a conventional gas diffusion layer (0.9 W cm−2). The significant performance enhancement was attributed to a higher pore volume and porosity of the CNF/carbon paper, which improved gas diffusion in the GDL. In addition, the superior performance of the cell with CNF/carbon paper at low relative humidity demonstrated that it had better water retention than the commercial GDL. This study provides a novel and facile method for the surface modification of GDLs to improve the performance of PEM fuel cells. The CNF/carbon paper with a microporous structure has suitable hydrophobicity and lower through-plane resistance, which makes it promising as an advanced substrate for GDLs in fuel cell applications.


 
150 viewsCategory: Biochemistry, Chemistry, Molecular Biology
 
Molecules, Vol. 28, Pages 2808: One-Step Microwell Plate-Based Spectrofluorimetric Assay for Direct Determination of Statins in Bulk Forms and Pharmaceutical Formulations: A Green Eco-Friendly and High-Throughput Analytical Approach (Molecules)
Molecules, Vol. 28, Pages 2811: Understanding the Potential Role of Nanotechnology in Liver Fibrosis: A Paradigm in Therapeutics (Molecules)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten