MyJournals Home  

RSS FeedsRemote Sensing, Vol. 14, Pages 4804: An Improved Source Model of the 2021 Mw 6.1 Yangbi Earthquake (Southwest China) Based on InSAR and BOI Datasets (Remote Sensing)

 
 

26 september 2022 14:58:29

 
Remote Sensing, Vol. 14, Pages 4804: An Improved Source Model of the 2021 Mw 6.1 Yangbi Earthquake (Southwest China) Based on InSAR and BOI Datasets (Remote Sensing)
 


The azimuth displacement derived by pixel offset tracking (POT) or multiple aperture InSAR (MAI) measurements is usually used to characterize the north-south coseismic deformation caused by large earthquakes (M > 6.5), but its application in the source parameter inversion of moderate-magnitude earthquakes (~M 6.0) is rare due to the insensitive observation accuracy. Conventional line-of-sight (LOS) displacements derived by the Interferometric Synthetic Aperture Radar (InSAR) have limited ability to constrain the source parameters of the earthquake with near north-south striking. On 21 May 2021, an Mw 6.1 near north-south striking earthquake occurred in Yangbi County, Yunnan Province, China. In this study, we derive both the coseismic LOS displacement and the burst overlap interferometry (BOI) displacement from the Sentinel-1 data to constrain the source model of this event. We construct a single-segment fault geometry and estimate the coseismic slip distribution by inverting the derived LOS and BOI-derived azimuth displacements. Inversion results show that adding the BOI-derived azimuth displacements to source modeling can improve the resolution of the slip model by ~15% compared with using the LOS displacements only. The coseismic slip is mainly distributed 2 to 11 km deep, with a maximum slip of approximately 1.1 m. Coulomb stress calculation shows a maximum Coulomb stress increment of ~0.05 Mpa at the north-central sub-region of the Red River Fault. In addition, there is a small Coulomb stress increase at the Southern end of the Weixi-Weishan fault. The potential seismic risks on the Weixi-Weishan and Northwest section of the Red River faults should be continuously monitored.


 
99 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 14, Pages 4799: Spatio-Temporal Dynamics and Driving Forces of Multi-Scale CO2 Emissions by Integrating DMSP-OLS and NPP-VIIRS Data: A Case Study in Beijing-Tianjin-Hebei, China (Remote Sensing)
Remote Sensing, Vol. 14, Pages 4803: Landslide Susceptibility Modeling Using Remote Sensing Data and Random SubSpace-Based Functional Tree Classifier (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten